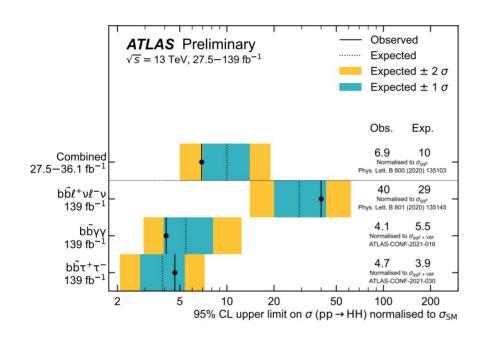
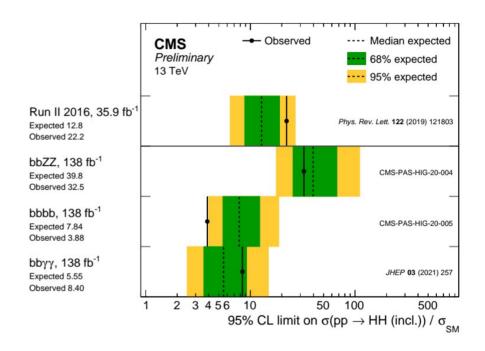

HH Theory Status

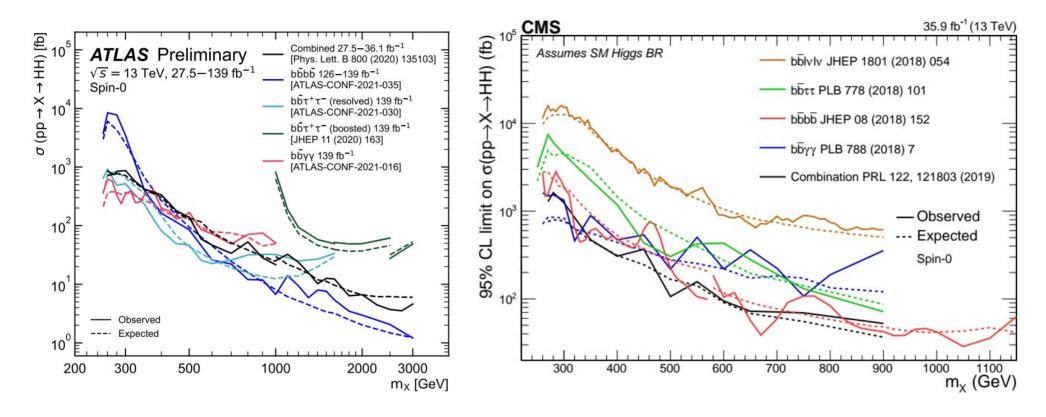
Ian Lewis
University of Kansas

EF01 Jan. 12, 2022

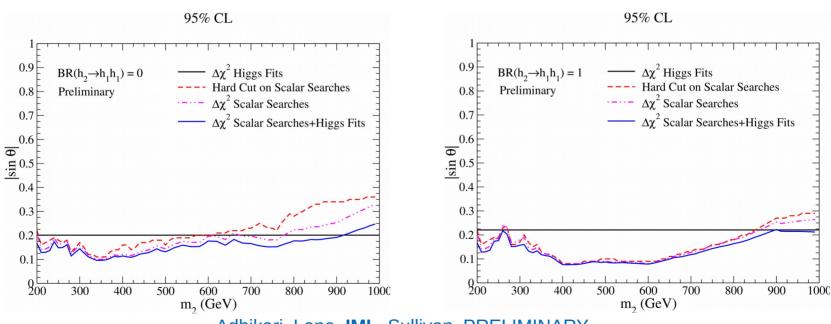

Di-Higgs in SM

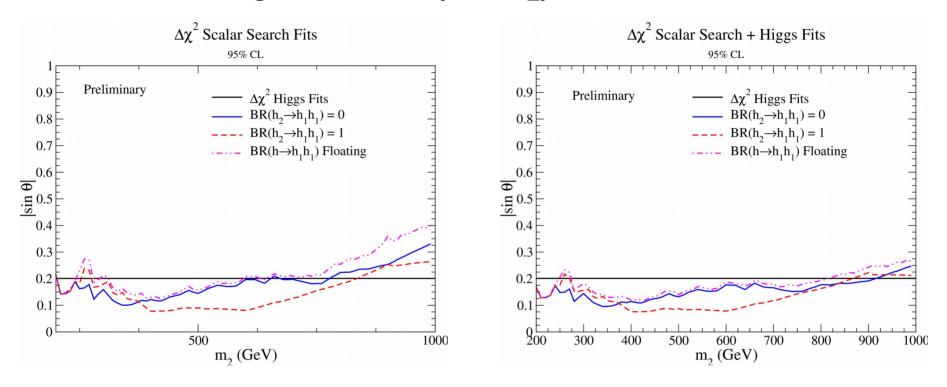


Higgs boson potential at colliders: Status and perspectives, Rev. Phys. 5 (2020) 100045


• From now on, will concentrate on gg->hh.

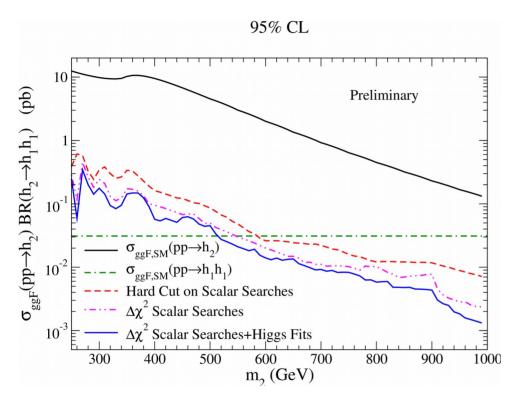
Current Searches: Non-Resonant


Current Searches: Resonance


Precision vs. Direct Searches

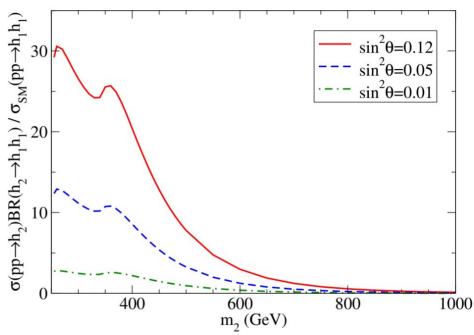
Singlet Model (No Z_2): Fits to data

- Compare fits including and not including Di-Higgs resonance searches.
- Including WW/ZZ/hh resonant searches.
- Hard cut: usual method of rejecting a point if it is excluded by any search.
- $\Delta \chi^2$: our proposed method for including searches in a χ^2 fit, see Adhikari, IML, Sullivan, PRD 103 (2021) 075027



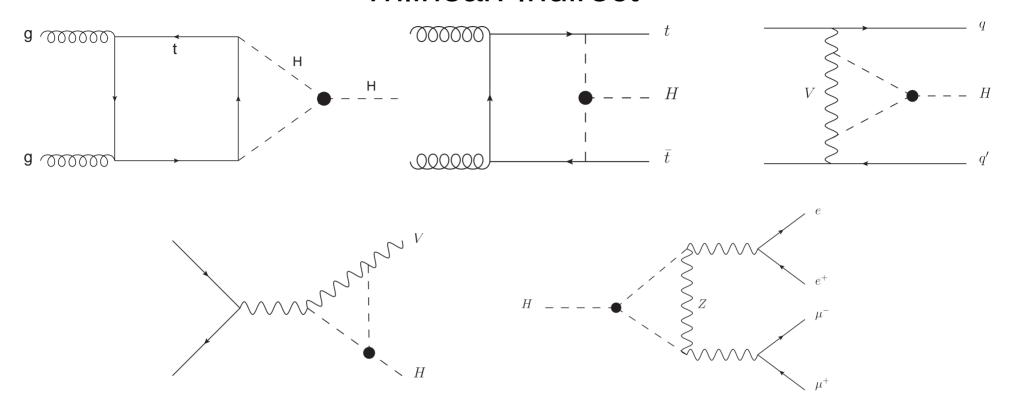
Singlet Model (No Z_2): Fits to data

• Comparing 0%, 100%, and floating Di-Higgs branching ratios.

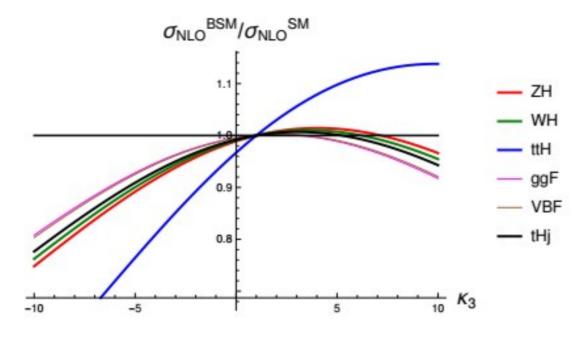

Max Rates in Singlet Model

Adhikari, Lane, IML, Sullivan, PRELIMINARY

Current constraints

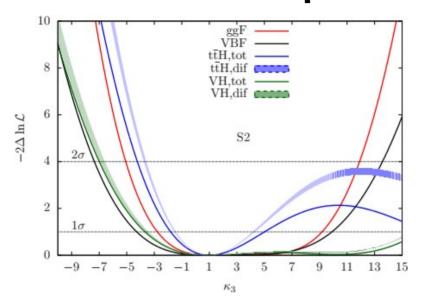

Double Higgs Production $\sin\theta$ Dependence at 13 TeV, b_4 =4.2

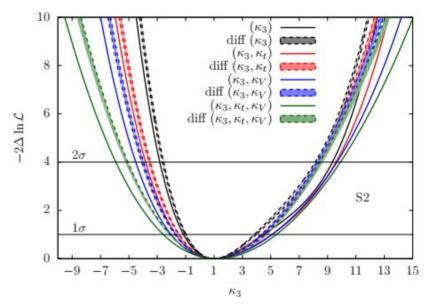
IML, Sullivan, PRD 96 (2017) 035037 See also Robens, Stefaniak, EPJC 76 (2016) 268


Maximum allowed rates

Trilinear: Indirect

Trilinear Higgs boson coupling can also appear in single Higgs production and decay at loop level.
 McCullough 2014; Gorbah, Haisch, 2016; Degrassi Guiardinao, Maltoni, Pagain, 2016; Bizon, Gorbahn, Haisch, Zanderighi, 2016; Di Vita, Grojean, Panico, Rimbau, Vantalon, 2017; Maltoni, Pagani, Shivaji, zhao, 2018

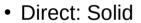

Trilinear in Loops



Maltoni, Pagani, Shivaji, Zhao, EPJC 77 (2017) 887

ullet Effects of anomalous trilinear Higgs couplings in production and decay.

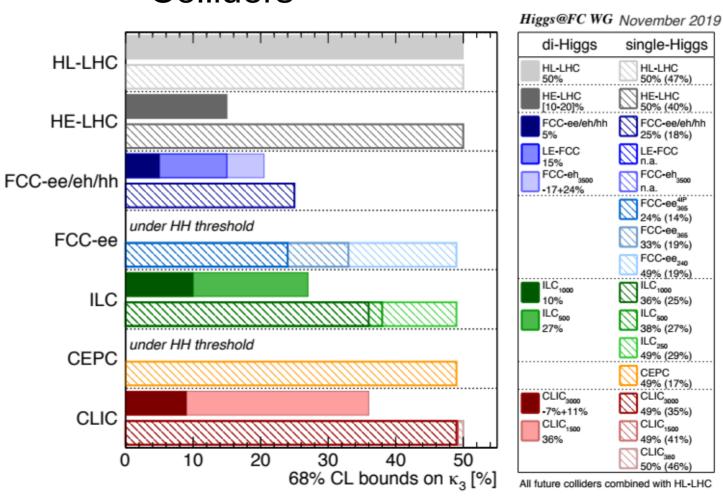
Loop Level Trilinear



Maltoni, Pagani, Shivaji, Zhao, EPJC 77 (2017) 887

- HL-LHC projections
- Including systematic and theory uncertainties
- κ3 expectations from direct searches at HL-LHC:

- 1σ: 0.5-1.4


Single Production vs. Double Production: Future Colliders

Indirect: hashed

 Paranthesis: one parameter fit

Higgs boson potential at colliders: Status and perspectives, Rev. Phys. 5 (2020) 100045

di-Higgs

HL-LHC

HE-LHC

[10-20]%

LE-FCC

-17+24%

ILC₁₀₀₀

CLIC₃₀₀₀ -7%+11%

CLIC, 500

10%

15% FCC-eh₃₅₀₀

FCC-ee/eh/hh

50%

single-Higgs

50% (47%)

50% (40%)

FCC-ee/eh/hh 25% (18%)

HL-LHC

HE-LHC

LE-FCC

FCC-ee₂₄₀

36% (25%)

49% (29%)

49% (35%)

50% (46%)

CLIC,500 49% (41%) CLIC ...

CEPC 49% (17%)

Trilinear from Models

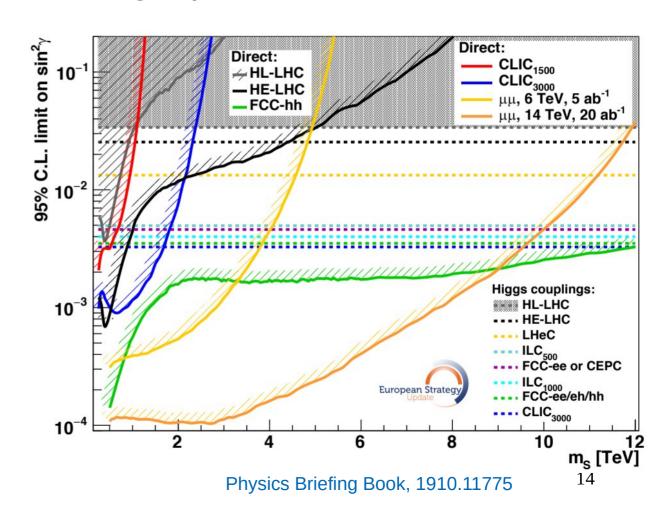
- In SMEFT, have operators $\frac{C_{\square}}{\Lambda^2}(\Phi^{\dagger}\Phi)\Box(\Phi^{\dagger}\Phi) + \frac{C_{\phi}}{\Lambda^2}(\Phi^{\dagger}\Phi)^3$
- This give an anomalous trilinear Higgs coupling:

$$\kappa_3 = \frac{\lambda_3}{\lambda_2^{\text{SM}}} = 1 - \frac{v^2}{\Lambda^2} \left(C_\phi - 3 C_\square \right)$$

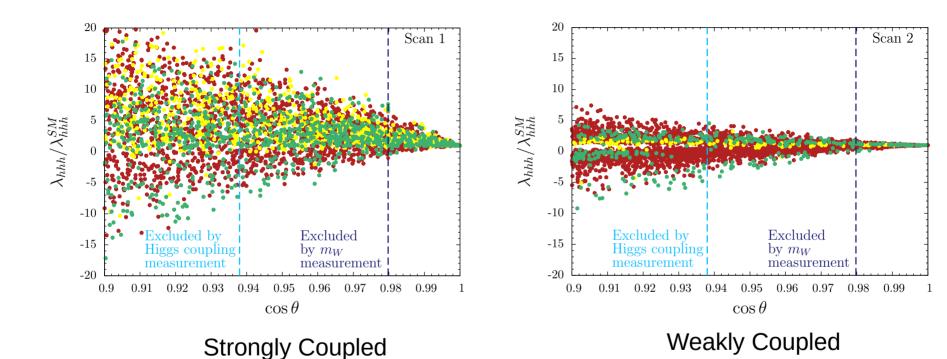
 If we integrate out heavy fields, can match onto that operator (small mixing limit)

Dawson, Murphy, PRD 96 (2017) 015041; Dawson, Homiller, Lane, PRD 102 (2020) 055012

- Singlet model:
$$\frac{v^2}{\Lambda^2}C_{\square} = -\frac{1}{2}\tan^2\theta$$
 $C_{\phi} = -C_{\square}\left(\tan\theta\frac{m}{2v} - \kappa\right)$


- 2HDM:
$$\frac{v^2}{\Lambda^2}C_{\phi} = \frac{\cos^2(\beta - \alpha)M^2}{v^2}$$

– M is the common mass of the heavy Higgs doublet, m is a Lagrangian mass parameter, κ depends on quartics and mass parameters.

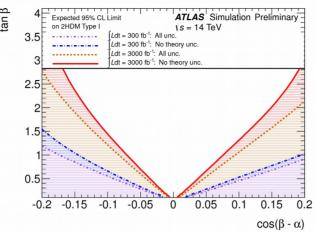

Singlet Constraints from single parameter Trilinear fits

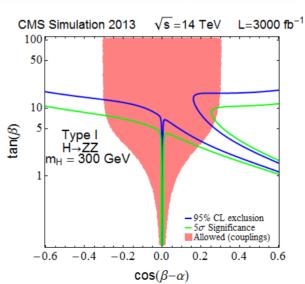
- ILC 240:
 - Single H: $\sin^2\theta \lesssim 0.2 0.25$
- ILC-500:
 - Single/Double H: $\sin^2\theta \lesssim 0.19 0.24$
- FCC-ee 250:
 - Single H: $\sin^2 \theta \lesssim 0.14 0.18$
- FCC-ee/eh/hh:
 - Single H: $\sin^2 \theta \lesssim 0.14 0.17$
 - Double H: $\sin^2 \theta \lesssim 0.04 0.05$
- Current precision Higgs:

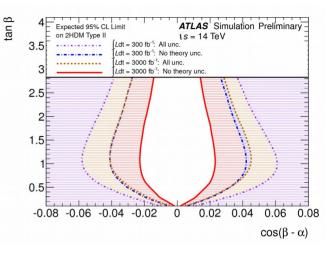
$$\sin^2 \theta \lesssim 0.04$$

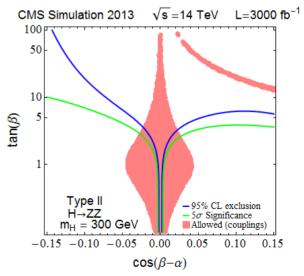
How big can trilinear get in Singlet Model?

Di Luzio, Grober, Spannowsky EPJC 77 (2017) 788

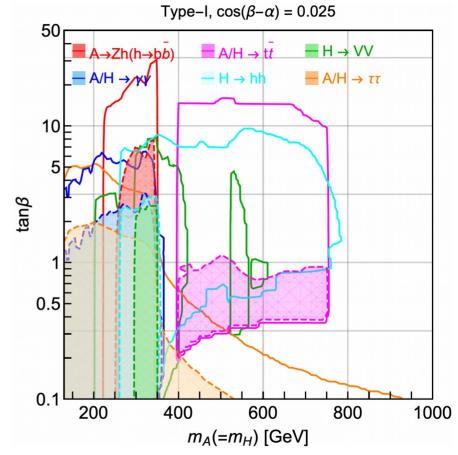

- Current Higgs precision limit: $\cos \theta > 0.98$
- Assumed mass about 800 GeV.
- Can still have a variation by a factor of two.


2HDM: HL-LHC Precision Measurements


- Variation of trilinear is small unless there are large decoupling effects.
- Due to mixing angle being small from precision measurements.


$$\kappa_3 = 1 + 0.17 \left(\frac{\cos(\beta - \alpha)}{0.1} \right)^2 \left(\frac{M}{\text{TeV}} \right)^2$$

- Would expect HL-LHC to see resonance before variation in trilinear gauge coupling.
- HL-LHC expected to have ~50% measurement of trilinear coupling.
- CEPC and FCC-ee can put 95% CL limit on the variation up to 17-19%

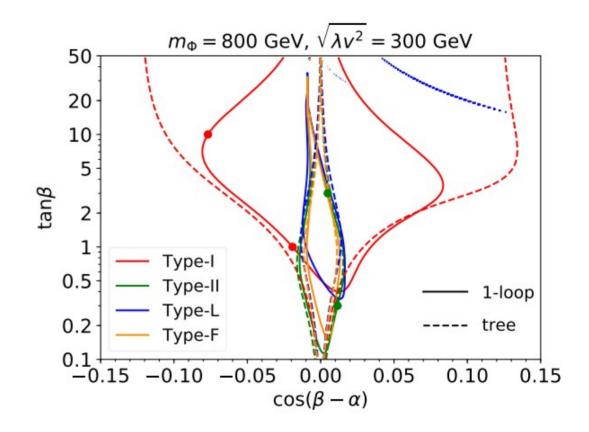


2HDM Type I: HL-LHC

- Solid: HL-LHC
- At $\cos(\beta \alpha) = 0.025$ the trilinear variation is

$$\kappa_3 = 1 - 0.01 \left(\frac{M}{\text{TeV}}\right)^2$$

 Sensitive to direct detection before variations in anomalous trilinear Higgs coupling.



2HDM: CEPC Precision Measurements

- 5 sigma discovery regions
- Can measure triple Higgs coupling indirectly to 17% at CEPC.
- At a mass of 800 GeV, this translates to

$$|\cos(\beta - \alpha)| \lesssim 0.13$$

- Precision Higgs measurements more sensitive.
- Note: parameter point on previous slide is just discoverable at CEPC, depending on tan $\boldsymbol{\beta}$

2HDM Benchmarks for Resonant Di-Higgs

- Type-I
- $Cos(\beta-\alpha)=0.11$

- Type-II
- $Cos(\beta-\alpha)=-0.027$

r	$n_{H_1} [{ m GeV}]$	$m_{H_2} [{ m GeV}]$	$m_A [{ m GeV}]$	$m_{H^{\pm}} \; [{\rm GeV}]$	α	$\tan \beta$	$m_{12}^2 \; [{ m GeV^2}]$
	125.09	263	622	626	-0.285	2.371	25922
	$\lambda_{3H_1}/\lambda_{3H}$	$y_{t,H_1}/y_{t,H}$	$\sigma_{H_1}^{\mathrm{NNLO}}$ [pb	$\sigma_{H_2}^{ m NNLO}$ [pl	b] $\sigma_A^{ m NN}$	LO [pb]	
	0.909	1.042	53.45	1.26	(0.55	

$$\begin{array}{lll} {\rm BR}(H_2 \to H_1 H_1) & = & 0.504 \; , & {\rm BR}(H_2 \to WW) \; = \; 0.342 \; , & {\rm BR}(H_2 \to ZZ) \; = \; 0.147 \\ {\rm BR}(A \to ZH_2) & = & 0.865 \; , & {\rm BR}(A \to t\bar{t}) \; = \; 0.116 \; , \\ {\rm BR}(H^\pm \to W^\pm H_2) & = & 0.874 \; . & {\rm BR}(H^+ \to t\bar{b}) \; = \; 0.107 \; . \\ & & \sigma_{H_2}^{\rm NNLO} \times {\rm BR}(H_2 \to H_1 H_1) = 635 \; {\rm fb} \end{array}$$

η	a_{H_1} [GeV]	m_{H_2} [GeV]	m_A [GeV]	$m_{H^{\pm}}$ [GeV]	α	$\tan \beta$	$m_{12}^2 \; [{\rm GeV^2}]$	
125.09 528		528	798	809	-0.695	1.268	130388	
	$\lambda_{3H_1}/\lambda_{3H}$ $y_{t,H_1}/y_{t,H}$		$\sigma_{H_1}^{\text{NNLO}}$ [pt	$\sigma_{H_2}^{\text{NNLO}}$ [p	$\sigma_{H_2}^{\text{NNLO}} [\text{pb}] \mid \sigma_A^{\text{NNLO}}$			
	0.974 0.978		47.02 2.84		0.47			
$BR(H_2 \to H_1 H_1) = 0.012 , BR(H_2 \to t\bar{t}) = 0.979 ,$								
$BR(A \to ZH_2) = 0.514 , BR(A \to t\bar{t}) = 0.482 ,$								
	E	$\mathrm{BR}(H^\pm \to W^\pm)$	H_2) = 0.5	560, BR(H	$^+ o t ar{b})$	= 0.43	37 .	
	$\sigma_{H_2}^{\mathrm{NNLO}} \times \mathrm{BR}(H_2 \to H_1 H_1) = 34 \mathrm{\ fb}$							

"Nightmare Scenario"

Resonant vs. Non-Resonant

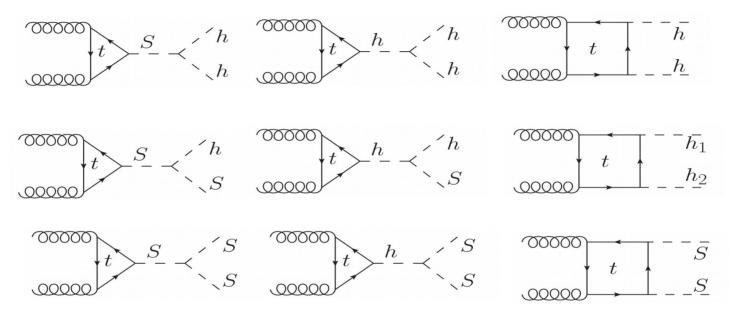
- Immense amount of work on Di-Higgs resonances.
 - Pair production of SM Higgs and mixed states via resonance: hh, hS, SS
- What about non-resonant production?
 - Case study: singlet model with no Z₂
 - Indeed, there is a diagram that can produce SS that does not decouple in the zero mixing limit.
 - So-called "nightmare-scenario" Curtin, Meade, Yu, JHEP 11 (2014) 127
 - However, if Z_2 is broken or no Z_2 , mixing angle does not have to be precisely zero.
 - Then new heavy scalars can decay and give visible signatures.
 - Will have little to no evidence in SM Higgs decays or double SM Higgs production.

Zero Mixing Limit

Couplings between scalar and Higgs:

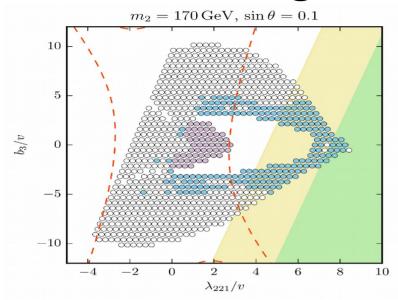
$$V(h,S) = \frac{a_1}{4}(h+v)^2 S + \frac{a_2}{4}(h+v)^2 S^2$$

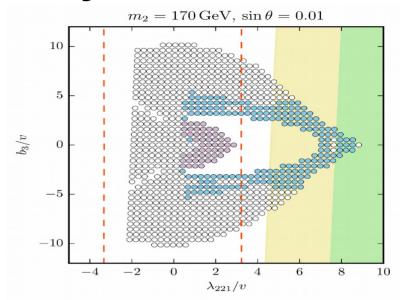
• Source of Higgs-scalar mixing is:


$$V(h,S) \supset \frac{a_1 v}{2} h S$$

• In the limit of zero mixing $a_1 \rightarrow 0$ and only a_2 survives

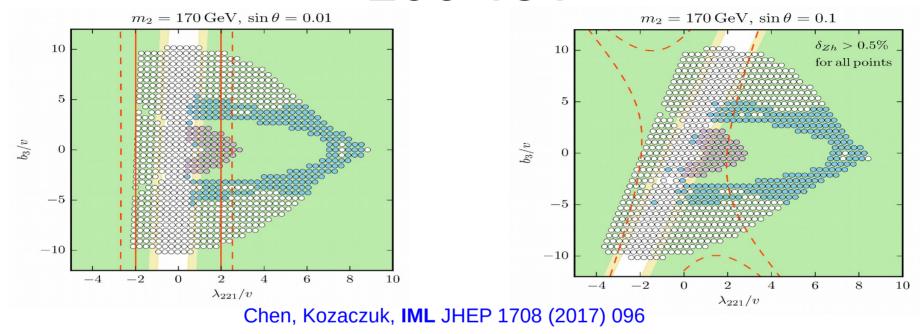
$$V(h,S) \rightarrow \frac{a_2}{4}(h+v)^2 S^2 = \frac{a_2 v^2}{4} S^2 + \frac{a_2 v}{2} h S^2 + \frac{a_2}{4} h^2 S^2$$


- If the scalar S does not mix with the Standard ModelHiggs, it only couples to the Higgs. Very difficult to produce and can be stable.
- a₂ is the only term to drive the first order phase transition.
 - Lower limit on how large it can be.
 - Gives h-h-S-S and h-S-S couplings, and so we have a lower bound on these.


Non-Zero Mixing

- Many di-boson production modes, all with different information about the potential.
 - Can have resonant di-Higgs if allowed.
- SS production depends on h-S-S coupling.
 - This is the coupling that must stay non-zero to hae a strong first order electroweak phase transition.

High Luminosity LHC

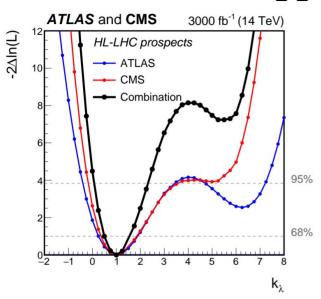


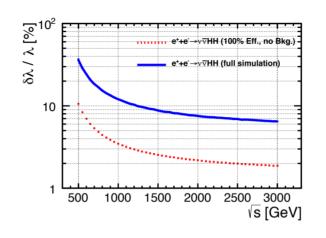
Chen, Kozaczuk, IML JHEP 1708 (2017) 096

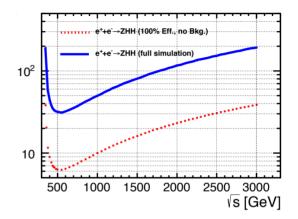
- 3 ab-1 at 14 TeV LHC.
- · Comparison of different methods of searching.
- Colored Dots: Compatible with strong first order electroweak phase transition.
- Searches for h₂h₂ production: Yellow: Exclusion, Green: Discovery
- Red dashed curves: Higgs self-coupling limits at 30%.

$$pp \to h_2 h_2 \to 4W \to 2j2\ell^{\pm}\ell'^{\mp}3\nu, \qquad \ell \neq \ell'.$$

100 TeV


- 30 ab⁻¹ at 100 TeV, can probe much of the parameter space.
- Colored Dots: Compatible with strong first order electroweak phase transition.
- Searches for h₂h₂ production: Yellow: Exclusion, Green: Discovery
- Red dashed curves: Higgs self-coupling limits to 15%. Solid lines: Higgs-Z-boson coupling limits to 0.5%


$$pp \to h_2 h_2 \to 4W \to 2j2\ell^{\pm}\ell'^{\mp}3\nu, \qquad \ell \neq \ell'.$$


Conclusions

- Complementarity between precision Higgs and direct searches.
- Current double Higgs resonance searches do put meaningful constraints on models.
- Direct searches can be sensitive to regions precision Higgs is not.
 - Some production modes of double scalar do not decouple.
- Many topics not covered:
 - The aforementioned double scalar resonances: hS, SS
 - New particles in the loop.
 - Light quark Yukawas in double Higgs production. Alasfar, Lopez, Grober JHEP 11 (2019) 088

Di-Higgs Projections: Future Colliders

ILC

HL-LHC

	$b\bar{b}\gamma\gamma$	$b\bar{b}\tau^+\tau^-$	$b\bar{b}ZZ^*$ (4 ℓ)	$b\bar{b}WW^*$ (2j $\ell\nu$)	<i>bb̄bb̄</i> +jet
$\delta \kappa_{\lambda}$	6%	8%	14%	40%	30%

Table 10.4: Precision of the direct Higgs self-coupling measurement in $gg \to HH$ production at $\sqrt{s} = 100$ TeV with $\mathcal{L} = 30$ ab⁻¹ for various decay modes.

100 TeV pp

Thank You